Surface snowfall identification using dual-frequency profiles

Chandra and Minda Le

CSU

Surface snowfall detection algorithm using snow index

Sample performance

Ground validation sample case: GPM overpass #4914 with KOKX Radar at Upton, NY

Date: Jan 09, 2015 Time: 12:24:55 UTC

Hydrometeor class from ground radar matches well with surface snowfall identification method

Alternate Verification: Orbit # 4914

Path Attenuation Estimates for the DPR

Robert Meneghini¹, Hyokyung Kim², Liang Liao²

- 1. NASA/GSFC, Code 612
- 2. Morgan State University/GSFC, Code 612

Outline

- Background & Status
- Reduction in variability of reference data
- NUBF Mitigation

 $\sigma^0(Ku)$

σ⁰(Ka)

Hurricane Matthew, 2 Oct 2016

Status of Algorithm

- A number of parameters used to compute σ^0 have changed
 - Redo temporal reference look-up tables
 - Compare path attenuations from V4 and V5
- Modify code & reference data for 5 surface types (ocean/land/coast/sea-ice/snow)
- Optional use of corrections for saturated Kuband σ^0 data

V4 V5

V4 V5

Path Attenuations: V5 (ordinate) vs V4 (abscissa) [Ku-band]

Path Attenuations: V5 (ordinate) vs V4 (abscissa) [Ku-band]

How can we improve the estimates of path attenuation?

- Reduce the standard deviation of the rain-free σ^0 reference data
 - Address the under-sampling problem at nearnadir incidence
 - Reduce the variability of the temporal reference data
 - Add new surface types: sea-ice, snow-covered land
- Reduce the errors caused by non-uniform beam-filling

Sea-Ice & Snow-covered Land

Motivation

- The variance of σ^0 at high latitudes can be reduced substantially if open ocean and sea-ice cases are separated
 - The mean rain-free σ^0 for the combined data generally will be incorrect for both categories
- Evidence points to some reduction in variance if land & snow-covered land are also distinguished

Orbit Clustering

- Insight into the influence of surface type (and accuracy of temporal reference) and can be obtained by looking at tight clusters of orbits
 - Search for sets of orbits (7) with nearly identical trajectories (deviation less than 1 FOV)
 - Data also can be used to test the performance of the temporal reference PIA estimates under ideal conditions (minimum spatial variation)

NUBF Mitigation

Motivation

- Attenuation & NUBF are closely linked
- Attenuation effects exacerbate the NUBF problem
- As such, the problem is more severe at Ka-band than at Ku-band
- If we had higher resolution data, the retrieval errors would decrease

Approach

- Using ancillary data (in adjacent/interleaved/range-sampled FOV's), interpolate both PIA & Z_m to higher resolution columns
- Normalize the interpolated fields to satisfy the initial conditions
- In this higher resolution space, solve for hi-res Z(x,y,z) over the multiple columns using traditional methods

NUBF Mitigation (some eq's)

$$A(\theta) = 2\int_0^{r_s} k(\theta, s) ds \approx \langle P_s(No \, Rain, \theta) \rangle - P_s(Rain, \theta)$$

$$A(\theta) = -q^{-1} \log \left[\frac{\iint G^{2}(x, y) \sigma_{R}^{0}(x, y) \exp[-2q \int_{0}^{r_{s}} k(s; x, y)) ds \right] dx dy}{\iint G^{2}(x, y) \sigma_{NR}^{0}(x, y) dx dy} \right]$$

let
$$g = G^2 / \iint G^2(x, y) dx dy$$
; $a(\theta; x, y) = 2 \int_0^{r_s} k(\theta, x, y; s) ds$
assume $\sigma_{NR}^0 = \sigma_R^0$; (note that $q = 0.2303$)

$$A(\theta) = -q^{-1}\log[\iint_{FOV} g(x,y)\exp(-qa(\theta;x,y))dxdy]$$
 (1)

if beam is uniformly filled, $A(\theta) = a(\theta)$

NUBF Mitigation

Similarly

$$Z_{m,dB}(h) = q^{-1} \log[\iint_{FOV} g(x, y) z_m(x, y; h) dx dy]$$
 (2)

Note that near the surface, the hi – res fields are related by

$$z(x, y) = z_m(x, y) \exp(-qa(x, y))$$

where z(x, y) is the hi – res, attenuation – corrected reflectivity factor

NUBF Mitigation

Replace high-res fields with the interpolated fields along with adjustment factors

$$a(x,y) \rightarrow \widetilde{a}(x,y) + \delta_a$$

$$z_m(x,y) \to \delta_{z_m} \widetilde{z}_m(x,y)$$

adjust
$$\delta_a$$
 and δ_{z_m} so that (1) and (2) are satisfied

Use modified interpolated fields in standard retrieval equations to get Z(x, y, z) at interpolated resolution

Nadir Geometry (Standard Data)

Nadir Geometry (w/Interleaved Data)

Off-Nadir Geometry with Range-Profiled PIA

Off-Nadir Geometry with Range-Profiled PIA

Rain Field: $x_0 = 0.000$, $y_0 = 0.500$, $\sigma = 1.00$; Incidence Angle: 0^0

Rain Field: $x_0 = 0.000$, $y_0 = 0.750$, $\sigma = 1.00$; Incidence Angle: 9^0

Rain Field: $x_0 = 0.000$, $y_0 = 0.500$, $\sigma = 1.00$; Incidence Angle: 0^0

Rain Field: $x_0 = 0.000$, $y_0 = 1.000$, $\sigma = 1.00$; Incidence Angle: 0^0

Comments

- The procedure gives some improvement, usually modest, over coarse resolution estimate
 - Greater reduction in rms error than in bias
 - Degree of improvement is non-uniform, however
- Bilinear interpolation has been used
 - Kriging & other geospatial methods might provide better results, esp when using interl. Ka-band data
- To understand the method, a simple storm model is used
 - MRMS data are being used to get a more realistic assessment of the approach

Summary

- Changes in SRT code & data bases have been made for V5
- Several improvements in the method appear to be feasible
 - Correction for under-sampling surface power at nadir
 - Variable spatial averaging of temporal reference data
 - Implementation of 5 surface categories
- An NUBF-mitigation strategy has shown some potential & will be pursued

PIA Estimates from Temporal Reference Data

- In following slides, the mean & std dev of the rain-free σ^0 data are shown by the black line and gray area about the black line (± 1 std dev)
- Surface type is indicated by the bar in top panel
- Rain/no-rain is indicated by the bar in the 2nd panel
- σ^0 data in rain are depicted by the blue lines
 - Different line types represent different orbits
- Difference between black & blue lines gives a temporal-ref estimate of the 2-way PIA
- The error assoc with the PIA is proportional to the vertical extent of the gray area

